

sddec20-18@iastate.edu

Isaiah Exley-Schuman | Mitchell Bratina | Calvin Christensen Joseph Kueny | Collin Kauth-Fisher

Advisor & Client: Daji Qiao

Requirements

- A prototype of the RF circuit will be created
 - Supercapcitor charged by an RF harvesting antenna
 - Door state transmitted to RasPi

Problem Statement

Design a door monitoring security system that requires no wiring to or batteries on the door.

Intended Use

- Determining the state of a door in an average home environment **Project Resources**
- 1.5F Supercapacitor

AGIC DOORS or Design Project	DASHBOARD LOGOUT Logged in as: sddec20-18	
ver Messages	Base Stations	
Jinkies, it's a dashboard!	Below is the list of your base stations, with their reported findings. For demonstration purposes, only one data point will be reported per base station.	
	IDActiveDoor StateConfidenceUser Message2345trueOpen0.68Door May Be Open	
	The data associated with the base station shows if it is actively reporting data,	

- CSI frame collection will be autonomous
- A prototype of the CSI modeling use will be created
 - Classification model will predict within one second
 - Classification model accuracy will not drop below 90% while maximizing recall score
- The system must accurately report door status 95% of the time

- ATTiny microcontrollers
- ECE Server Space
- Personal Computers
- Used for model
- training

RF Circuit

CSI Data Collection

Gathering CSI Frames

- Two ESP32 microcontrollers
 - One access point & one client
 - Send and receive CSI frames
- Frames go to Raspberry Pi Frames are placed into JSONs

What is CSI?

- Channel State Information
- A type of data that accompanies WiFi packets
- Thought of as a 'preamble'
- This data describes how the signal wave propagates through the air
- The JSON files of CSI data are sent to the server for processing

Manipulating CSI Frames

- Not all of the information we collected was needed
- The CSI frame includes:
 - Channel
 - Packet information
 - Sub-carrier Index
 - Total bytes
- We only cared about the Sub-carrier Index • This is where the data is
- CSI data gets turned into amplitude & phase angle
- Used for ML

• We use it to make observations about the wave's path of travel

Figure 1: CSI Propagation & Use

Figure 4: Circuit Schematic

Microcontroller

• ATTiny

Operation

- Chosen for small profile and low power consumption
- Easily programmed in Arduino API
- High clock speed allows a variety of transmission band options

Figure 5: Implemented Circuit

Technical Details

- No battery or external power
- RF to DC converter supplies powerand charges the capacitor while the system is in low power mode (when not transmitting)
- Super capacitor supplies current during peak load (when transmitting)
- Button triggers transmission when its state changes

Figure 2: Circuit Schematic

- Random Forest
- XGBoost
- Balance number of
- Decision Trees

- Work on improving recall metric

training sets

smaller data sets

degree readings for

• Once the button changes state, an interrupt will wake the ATTiny and send a status signal to the base station that the door has opened/closed

boot and enter low power mode

• The device collects RF power and

• Once charged enough, the ATTiny will

charges the capacitor

• The device returns to low power mode No Change

Return to Interrupt Loop

Figure 6: Logic Flow

Figure 3: Average Random Forest Statistics

- **Testing**
- 15° angle changes • From 15° to 90°.
- Compared every open angle to 0°.
- This allowed us to examine the performance as the door shut.

Results

- Random Forest was optimal.
- Highest accuracy along with recall.
- Above 60° there were no distinguishable differences.

Testing

- Functional testing to verify operation
 - LED used for quick and easy diagnostics
- Parameter testing
 - Current draw (low power mode)
 - Current draw (while transmitting)
 - Rate of capacitor discharge